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Abstract

As part of the USGS Water, Energy, and Biogeochemical Budgets project and the NSF Long-Term Ecological Research

work, a parameter estimation code was used to calibrate a deterministic groundwater flow model of the Trout Lake Basin

in northern Wisconsin. Observations included traditional calibration targets (head, lake stage, and baseflow observations)

as well as unconventional targets such as groundwater flows to and from lakes, depth of a lake water plume, and time of

travel. The unconventional data types were important for parameter estimation convergence and allowed the development

of a more detailed parameterization capable of resolving model objectives with well-constrained parameter values.

Independent estimates of groundwater inflow to lakes were most important for constraining lakebed leakance and the

depth of the lake water plume was important for determining hydraulic conductivity and conceptual aquifer layering. The

most important target overall, however, was a conventional regional baseflow target that led to correct distribution of flow

between sub-basins and the regional system during model calibration. The use of an automated parameter estimation code:

(1) facilitated the calibration process by providing a quantitative assessment of the model’s ability to match disparate

observed data types; and (2) allowed assessment of the influence of observed targets on the calibration process. The model

calibration required the use of a ‘universal’ parameter estimation code in order to include all types of observations in the

objective function. The methods described in this paper help address issues of watershed complexity and non-uniqueness

common to deterministic watershed models.
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1. Introduction

In order to have confidence in a model’s

interpretive or predictive capability, we need to assess

how well the simplified system represented in the

model simulates the natural system observed in the

field. This is typically done through calibration
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Fig. 1. Parameter zonation, model design, and target locations for

the Trout Lake watershed model. K, hydraulic conductivity zones;

R, recharge zones; and L, lakebed leakance zones.

R.J. Hunt et al. / Journal of Hydrology 321 (2006) 286–296 287
whereby simulated heads and fluxes are compared to

field measurements. Inclusion of flux targets, in

addition to heads, is important because it overcomes

parameter correlation between hydraulic conductivity

(K) and recharge, and facilitates unique calibrations

(Poeter and Hill, 1997). Head and flux targets may not

be sufficient, however, for constraining some model

parameters such as streambed conductance (Hunt,

2002). Hence, other insight (e.g. Seibert and

McDonnell, 2002), or field data in addition to heads

and fluxes, can be important for improved calibration

and system understanding. Previous work has demon-

strated that solute distributions (Christensen et al.,

1995; Anderman et al., 1996), isotopes (Krabbenhoft

et al., 1990a; Poeter and Gaylord, 1990), and

temperature distributions (Bravo et al., 2002) are

useful in calibrating a flow model. In the Trout Lake

Basin, a variety of data types have been collected that

are potentially useful in model calibration, including

commonly collected head andfluxdata. Less commonly

collected data available for this basin include water

isotopes (Ackerman, 1992; Walker et al., 2003), and

groundwater age dating (Walker et al., in review).

Travel times and groundwater and surface-water

interaction have been previously simulated with

three-dimensional groundwater flow models. In this

paper, we describe how a combination of convention-

al and unconventional information can improve the

calibration of a watershed-scale flow model.
2. Site description and previous modeling

The Trout Lake Basin (Fig. 1) is home to the North

Temperate Lakes Long Term Ecological Research

(NTL-LTER) site and the US Geological Survey’s

Northern Temperate Lakes Water, Energy, and

Biogeochemical Budgets (WEBB) site. The system is

groundwater dominated, with groundwater derived

baseflow accounting for over 90% of total streamflow

(USGS, unpublished data). The aquifer consists of 40–

60 m of unconsolidated Pleistocene glacial deposits,

mostly glacial outwash sands and gravel (Attig, 1985).

Horizontal hydraulic conductivities are estimated to be

about 10 m/d (Okwueze, 1983; Hunt et al., 1998), with

localized zones of higher conductivity in the near-

surface sediments around Sparkling and Crystal Lakes

(K4, K5 in Fig. 1) based on field evidence and smaller-
scale modeling (Krabbenhoft et al., 1990b; Hunt et al.,

1998; Kim et al., 1999). Vertical anisotropy in

hydraulic conductivity is relatively small, with the

ratio of horizontal to vertical conductivity ranging

from 4:1 to 8:1 at a scale of a couple of meters

(Kenoyer, 1988). The lakes occupy depressions in the

glacial deposits that may penetrate more than 80% of

the aquifer. Trout Lake, the largest lake in the basin

with an area of 11 km2, is drained by the Trout River

(Fig. 1) and is fed by four streams.Annual precipitation

averages about 79 cm/yr (Cheng, 1994) and average

terrestrial groundwater recharge is estimated to be

27 cm/yr (Hunt et al., 1998), with slightly higher rates

in areas composed of a higher percentage of conifer

trees (Dripps et al., 2006).Annual evaporation from the

lakes is about 54 cm/yr (Krabbenhoft et al., 1990;

Wentz and Rose, 1991); thus, net precipitation on the

lakes is about 25 cm/yr. Lakes are well connected to
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the groundwater system and many lakes are flow-

through lakes with respect to groundwater.

The Trout Lake basin has been the focus of several

modeling studies (Cheng, 1994; Hunt et al., 1998;

Champion, 1998; Pint, 2002) that represent stages in

the development and refinement of a regional

groundwater model, which will be used in future

studies to address a variety of research problems

including the effects of climate change.
3. Methods

3.1. Model design

A steady-state model was constructed using MOD-

FLOW2000 (Harbaugh et al., 2000) and MODPATH

(Pollock, 1994). The three-dimensional model applied

a uniform horizontal nodal spacing of 75 m and four

layers (Fig. 1). The bottom three layers ranged in

thickness from 5 to 15 m while the upper layer was

relatively thick, with a saturated thickness between 8

and 35 m, to minimize the possibility of nodes drying

during calibration and during transient simulations. A

two-dimensional analytic element (AE) model using

GFLOW (Haitjema, 1995a) was modified from an

existing regional model of the Trout Lake area (Hunt

et al., 1998) and was used to derive boundary

conditions for the finite difference model according

to the methodology of Hunt et al. (1998). The model

included areas outside the Trout Lake basin to allow

groundwater divides to move as the model was

calibrated. This is important in this study because the

groundwatershed and surface watershed are not aligned

(Hunt et al., 1998) and the groundwatershed is estimated

to be more than 40% larger than the surface watershed.

The MODFLOW grid was extended beyond the

groundwatershed boundaries; groundwater fluxes cal-

culated at the boundaries of theMODFLOWgrid by the

AE model were distributed to the upper three layers of

the finite difference model proportional to layer

transmissivity and input toMODFLOW’swell package.

Crystalline bedrock underlies the glacial deposits and is

assumed to act as an impervious bottomboundary of the

model. Recharge flux was specified across the water

table, which formed the upper boundary.

Thirty lakes within the Trout Lake basin or near its

boundary were simulated using the LAK3 Lake
Package (Merritt and Konikow, 2000), which calcu-

lates lake stages based on volumetric water budgets.

Simulating lakes stages within the model is superior to

specifying lake stages using constant head nodes

because it helps ensure that heads are not overly

specified in the immediate area of interest. Similarly,

streams located within the Trout Lake basin were

simulated using the Streamflow Routing Package

(Prudic et al., 2004), thereby allowing calculation of

stream stage and flow. For convenience, other lakes

and streams distant from the area of interest were

represented as head dependent flux boundaries using

the River Package (McDonald and Harbaugh, 1988).

The streambed sediments were assumed to have a

uniform thickness of 1 m and a vertical hydraulic

conductivity of 8.63 m/day; though it should be noted

this parameter was relatively insensitive over the

range of reasonable values in this watershed (Hunt,

2002). All aquifer hydraulic conductivity zones were

assumed to have a vertical anisotropy ratio (Kx/Kz)

equal to four (Kenoyer, 1988) within a given model

layer. Effective porosity, used in particle tracking, was

set equal to 0.29 (Krabbenhoft and Babiarz, 1992).

3.2. Calibration approach

Calibration was automated using the non-linear

regression parameter estimation code UCODE (Poeter

and Hill, 1998). Eleven model parameters (two

recharge zones, five hydraulic conductivity zones,

and four lakebed leakance zones—Fig. 1) were

allowed to vary during model calibrations. UCODE

adjusts the squared model residual by a weight

(variance of the measurementK1), resulting in dimen-

sionless residuals. This formulation allows different

target types to be evaluated in the same objective

function. Taking advantage of this capability, five

types of targets were used. The first two types are

typically used in groundwatermodels and referred to as

‘traditional targets’; these included water levels from

lakes and wells (head targets) and the groundwater

component of streamflow (baseflow targets). Five

Long-Term Ecological Research (LTER) lakes had

measured stages; 20 additional lake stages were

estimated from topographic maps. The LTER lake

targets were given a relatively high importance, thus a

relatively small standard deviation in UCODE—0.5 m

for lakes without surface water outflows (seepage
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lakes) and 0.25 m for drainage lakes based on the 17

year (1984–2001) measured range. A range of G2

standard deviations represents the approximate 95%

confidence interval around the observed value. Lake

stages obtained from topographicmapswere given less

importance by using a standard deviation equal to 1 m

to reflect the increased uncertainty of their vertical

elevation and uncertainty associated with howwell the

stage reported on the topographic map represents a

long-term average. Groundwater level measurements

from 58 wells measured during July 2001—a near

average period (Pint, 2002)–were used as head targets.

The UCODE weight assigned to all head targets

(standard deviation equal to 0.3 m) corresponds to a

representative variation determined using wells with

long-term data sets. The 10-year (1991–2000) mean

baseflows at the four stream gaging stations were

calculated using the methods of White and Sloto

(1990) and used as baseflow targets. These discharge

records are of relatively high quality and were given a

coefficient of variation (CV) ranging from 0.02 to 0.05.

A CV of 0.02 represents an approximate 95%

confidence interval of G4% around the observed

mean baseflow at a given station.

In addition to traditional head and baseflow targets,

three types of ‘unconventional’ data were also used in

the parameter-estimation objective function (the sum

of squares of weighted residuals) as discussed below.

† Groundwater fluxes (m3/d) to and from 11 selected

lakes in the basin—These targets were obtained

using a stable-isotope mass balance (Ackerman,

1992) and water budget analysis. Groundwater

inflow rates are considered to have less uncertainty

than the groundwater outflow rates for the lakes;

thus, inflow rates were given a CV of 0.3 and the

outflow rates were given a CV of 0.7. The

simulated values were obtained from the LAK3

package (Merritt and Konikow, 2000) output.

† Elevation of the top of the Big Muskellunge lake

water plume—Elevation targets also were

included in the objective function at two piezo-

meter nest locations (labeled P7 and P14 in Fig. 1).

Using stable isotopes of water, the interface

between terrestrial-derived and lake-derived

water sources was found to be approximately 11

and 16 m below the water table at P7 and P14,

respectively. These targets were given a standard
deviation of 0.5 m to account for the uncertainty

that the plume may lie between two vertically

spaced sampling points. The simulated lake plume

elevations were obtained from MODPATH flow-

paths that traveled from Big Muskellunge Lake to

the piezometers; two MODPATH automatic

termination zones were used to obtain elevation

results at the piezometer nest locations.

† Time of travel to one well nest—Travel time from

Big Muskellunge Lake to P7 (Fig. 1) was

estimated using CFC and tritium sampling

(Walker et al., in review). The approximate

flowpath and sampling depth were identified

using the analytic element model of Hunt et al.

(1998). A standard deviation of 1 year was

assigned to the target value (8 years), reflecting

the expected uncertainty in aquifer porosity. The

simulated result was obtained from the MOD-

PATH travel time output for the automatic

termination zone specified at P7. It should be

noted that this data class would have limited utility

without adequate control on lateral and vertical

flowpaths. Moreover, the use of groundwater

samples for measuring groundwater age has

recently been questioned (e.g. Bethke and John-

son, 2002; Pint et al., 2003).
3.3. Statistical analysis of target influence

One way to assess the influence of a given

observation target on the parameter estimation

regression is to compare the results using all

observations with the results when the observation

in question is omitted (Hadi, 1992). This method

assigns increased influence to observations whose

deletion from the parameter-estimation process has a

relatively large effect on the overall measure of model

error (the residual sum of squares) and whose

simulated values are relatively sensitive to small

changes in parameter values. However, influence is

greatest for parameter-sensitive observations that are

spatially isolated, that is, not clustered with other

observations within a property zone of the model.

Fig. 2 shows a simple linear regression model with

two observations that are difficult to match and whose

simulated values are sensitive to small parameter

changes. The parameter estimation results are more



Fig. 2. Hypothetical linear regression results from Cook andWeisberg (1982) showing outliers with little influence on the regression (Outlier A)

and with appreciable influence on the regression ,Outlier B).
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strongly influenced by outlier B than by outlier A.

Observation A is near other observations which

offsets potential influence; observation B uniquely

represents one part of the data range and its absence

would most strongly affect the slope of the solution.

To the extent that this observation is reliable, its

influence is desirable (Yager, 1998).

‘Cook’s D’ statistic ranks the influence of a single

observation on the set of model parameters as a whole.

The statistic measures the relative distance between

the center of the confidence ellipsoids for the

parameters based on the full data and the center of

the confidence ellipsoids when a given observation is

omitted. (Cook, 1977; Hadi, 1992). The expression for

Cook’s D combines a measure of the degree to which

the residual sum of squares is changed by omitting the

single observation with the ‘leverage’ that the

observation exerts on the estimation process. High

leverage observations are those whose simulated

values are not only sensitive to perturbations in

parameter values, but are also relatively isolated. The

‘DFBETAS’ statistic measures the influence of a

single observation on the estimation of a single

parameter. The two statistics can, along with

parameter sensitivity and correlation, give insight

into controls on the parameter estimation process.

Using these additional statistics, the model structure
(e.g. Yager, 1998) and observation weights can be

adjusted to reduce the influence of unreliable

observations. In this work we use these statistics to

determine the value of competing data types. The

Cook’s D and DFBETAS algorithm of MOD-

FLOW2000 (RESANP, Harbaugh et al., 2000) was

modified to accept UCODE output for selected

simulations in the form of (a) the weighed residuals

of each target (from the *._ws UCODE file), (b) the

parameter covariance matrix relating the interdepen-

dence of estimated parameters (from the *._tp

UCODE file), and the sensitivity matrix relating the

change in simulated results at each target to a small

perturbation in each parameter value (also from the

*._tp UCODE FILE). Results from the algorithm

adapted to UCODE output compared well to MOD-

FLOW2000-derived Cook’s D and DFBETAS when

checked using a synthetic model containing head and

baseflow targets.
4. Results and discussion

The optimized model matched all five data classes

well by varying the 11 parameters in the optimization.

The optimized hydraulic conductivity parameters

are near previously estimated values and support
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the presence of a layer of a slightly lower conductivity

(K2 in layer 2, Fig. 1) hypothesized to be present as a

result of a period of relatively fine-sand deposition

associated with distant ice during late Wisconsinian

glaciation (Attig, 1985). The root mean squared errors

for the calibrated model were 0.56 m for head (for

measured heads spanning 9.47 m), 0.14 m for lake

stage of the five principal LTER lakes, and 0.90 m for

20 other lakes. Head calibration statistics are similar

to those reported by Hunt et al. (1998), but are

considered superior because of the larger number of

head calibration targets (58 versus 31) and a wider

distribution through the model domain. The simulated

lake stages were within the 95% confidence interval

around the measured values calculated using the

expected standard deviation. Simulated base flows

were within 1 percent of measured flows. The

calibrated model also closely reproduced the uncon-

ventional data. Groundwater inflows to the lake were

commonly within the expected uncertainty (Fig. 3),

especially at the higher values (>10,000 m3/d) where

a regional model is expected to be more representa-

tive. Top elevations of the lake water plume were

close (within 0.3 and 1.1 m of observed elevations) at

locations 1 km and 2 km away from Big Muskellunge

Lake. Finally, the simulated time of travel to P7 was

within 10% of the 8-year travel time estimated using

age dating. Additional information on calibration of

the model is given by Pint (2002).

The inclusion of unconventional types of cali-

bration targets was important to constrain the

optimization of the watershed model. Most telling,
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the parameter estimation regression would not

converge if only head and flux targets were used,

demonstrating that the traditional targets alone could

not be used to estimate the number of parameters

needed for accurate simulation of groundwater/sur-

face-water interactions. Therefore, if the target data

had consisted of only heads and flows, it would have

been necessary to reduce the number of model

parameters, or combine parameters and/or include

prior information.

Observations with absolute values of Cook’s D

greater than 4/n (O0.036 for 112 observations) are

considered globally influential (Cook and Weisberg,

1982). Of the 112 traditional and unconventional

targets, a Cooks’ D statistical analysis showed 10

targets had global influence on the parameter set. Of

these, one half were unconventional data types

(Table 1). Absolute values of DFBETAS greater

than 2/n1/2 (O0.189) are considered influential with

respect to a particular parameter. A DFBETAS

analysis showed that an additional 10 targets had

influence for a subset of the parameters (Table 1).

Eight of the 20 influential DFBETAS targets were

unconventional targets (bold font, Table 1). In this

application, the number of globally influential

observations is relatively small (10 out of 112

observations, Fig. 4(a)). Joint consideration of scaled

residuals and leverage (Fig. 4(b)) shows that some

observation groups lack influence (heads, topographic

lake stages), while other groups with few members are

especially important (baseflows, plume depth). The

statistics single out observations that either have a

strong relation to some portion of the model (e.g.,

measures of groundwater inflow at lakes) or integrate

the overall model behavior (e.g., measurements of

baseflow, particularly at the basin outlet). The

influence of specific data types is considered in

more detail below.

Of the conventional head and flow targets, three of

the four baseflow targets and 8 of 58 head targets were

influential. The relative importance of baseflow

targets for groundwater flow modeling has been

noted previously (Yager, 1998; Hunt, 2002), though

the reasons are not well documented. All stream gage

locations are not equally influential, however, as

the DFBETAS analysis (Table 1) illustrated the

importance of having conventional flow targets at

multiple locations within the flow system for



Table 1

DFBETAS for influential observations arranged in order of decreasing influence

Observation name K1 K2 K3 K4 K5 R1 R2 L1 L2 L3 L4 DFBETAS Cook’s D? Calibration target type

Count Sum

Trout river 2.5 7.0 7.5 6.7 3.5 3.7 0.6 2.4 11.5 1.9 0.3 11 47.7 Yes baseflow

Depth@P-7 3.1 0.3 3.3 1.1 1.1 1.1 – 1.6 1.0 – 0.4 9 12.9 Yes lk plume depth

Trout Lk stage 0.5 0.8 0.3 – – 0.4 0.3 0.3 1.6 8.1 0.3 9 12.6 Yes lake stage

Little John Lk gw-in – 0.5 – 0.5 0.4 0.3 – 0.9 0.6 0.2 0.3 8 3.6 Yes lake inflow

Allequash Ck 1.0 1.3 2.1 1.7 0.7 4.6 – – 1.0 – – 7 12.3 Yes baseflow

Pallette Lk gw-in 0.7 1.5 – 0.2 – 0.4 – 0.8 – 0.7 0.9 7 5.3 Yes lake inflow

Firefly Lk gw-in 0.2 0.4 – – – 0.2 – 0.2 0.2 0.2 1.5 7 3.1 Yes lake inflow

Well CC 0.7 0.4 – – 0.2 0.4 – 0.4 – 0.2 – 6 2.3 Yes head

Well HS 0.7 0.4 – – 0.3 0.5 – 0.3 – 0.2 – 6 2.3 Yes head

Depth@P-14 – – 0.6 0.4 0.5 – – 0.3 – – – 4 1.8 Yes lk plume depth

Day Lk gw-in – – – 0.2 – – – 0.2 – – 0.4 3 0.8 No lake inflow

Diamond Lk gw-in – – – 0.2 – 0.3 – – 0.2 – – 3 0.7 No lake inflow

North Ck – – – – – – 0.4 – 0.3 – – 2 0.6 No base inflow

Well K59 – – – 0.3 0.3 – – – – – – 2 0.6 No head

Well P12s 0.3 – – – – 0.2 – – – – – 2 0.6 No head

Well P12d 0.3 – – – – 0.2 – – – – – 2 0.5 No head

Well K58 – – – 0.2 0.2 – – – – – – 2 0.5 No head

Crystal Lake gw-in – – – – – – – – – – 0.3 1 0.3 No lake inflow

Well P5d 0.2 – – – – – – – – – – 1 0.2 No head

Well P7d 0.2 – – – – – – – – – – 1 0.2 No head

–, DFBETAS value less than threshold. Unconventional target types are highlighted.
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distributing flow between sub-basins and the larger

system. The analysis underlined the importance of the

flow target from the Trout River, which is the ultimate

drain for the area; this target was the most influential

of all, being influential for all 11 parameters

estimated. The watershed outlet appears to be

important not only for ensuring the correct watershed

mass balance, but it is also important for quantifying

partially penetrating conditions for surface water

bodies upgradient of the Trout Lake regional sink.

Correctly distributing flow between underflow and

capture by lakes and streams is expected to be critical

for subwatershed mass balance near a strong regional

discharge feature such as Trout Lake. The flow at

North Creek (Fig. 1), on the other hand, did not have

Cook’s D global influence, but was locally influential

for constraining the local recharge zone that

surrounded its subwatershed (as shown by its

DFBETAS statistics in Table 1). Stevenson Creek,

the only baseflow target not to have influence, is

exceptional because it did not have a local recharge

zone. This illustrates how initial model parameteriza-

tion can affect observation influence.

Whereas head targets were occasionally influential,

only one lake stage target (Trout Lake) had influence

across the parameters. This is expected given the large

areal extent of the lake (Fig. 1). Lake inflows, on the

other hand, had more influence and comprised 6 of
the 20 DFBETAS influential targets. Because the

DFBETAS values for lakebed leakance were generally

larger than for other parameters, these target types

were primarily important for constraining lakebed

leakance values. The existence of target types that can

facilitate leakance estimates of surface water features

is notable because it is often difficult to estimate this

parameter using head and flux targets (Hunt, 2002).

The depth of the lake water plume was most

important for constraining hydraulic conductivity

(higher DFBETAS values in Table 1), though it had

some influence on other parameter types as well. This

increased constraint on hydraulic conductivity allowed

estimation of layered zones in the aquifer.Whereas the

regression could not converge in earlier models when

only head and flux targets were used for calibration, the

addition of lake water plume data allowed parameters

for a layered conceptual model to be estimated. It is

expected that this more realistic conceptualization of

aquifer layering will improve simulated flowpaths,

time of travel, and residence time, within the basin

(Haitjema, 1995b; Bethke and Johnson, 2002).

Time of travel within the aquifer was not influential

for estimating any parameter. This result was not

unwelcome because there are concerns about how

representative age estimates are when measured using

samples collected from wells. For example, there are

known difficulties in interpreting CFC dates of lake-
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derived recharge (Walker et al. in review), estimating

representative groundwater ages given multiple

sources of water (Pint et al., 2003), and mixing of

waters during sampling (e.g. Bethke and Johnson,

2002). This increased uncertainty was not included in

the weight used in the regression, and if it were, the

observationweight and related importance of the travel

time observation would be further reduced.

It is interesting to note that the importance of the

unconventional data types is not easily identified

using a common measure of parameter sensitivity -

dimensionless scaled sensitivity (DSS-Poeter and

Hill, 1998). The DSS of unconventional targets

(Fig. 5) are generally of the same rank as those of

conventional targets (heads, lake stage, and stream

baseflows). Anderman et al. (1996) also noted that the

addition of advective flowpath information did not

appreciably increase the parameter sensitivity over

what was obtained by using head and flow data.

However, parameter sensitivity measures such as DSS

simply measure the response of the simulated target

values to a parameter perturbation, while the Cook’s

D and DFBETAS analyses evaluate changes to the

regression residuals that would occur if the obser-

vation was removed from the regression. The latter

approach provides information on influence rather

than simple sensitivity.

Throughout this exercise, an automated parameter

estimation code proved to be very useful for a model
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Fig. 5. Dimensionless scaled sensitivities (DSS) for traditional

(head and streamflow targets only) are similar to DSS calculated

using all target types (head, streamflow, lake flux, plume depth, and

time of travel). This illustrates that common measures of parameter

sensitivities such as DSS may not convey the influence of different

target types.
where many targets using different types of data were

used. Trial-and-error calibration to the head and flux

data used in a 1998 modeling effort of this basin

‘proved to be very difficult’ (Champion, 1998) even

though the targets were fewer in number and included

only heads and fluxes. It should be noted that this

application needed a ‘universal’ parameter estimation

code because disparate data needed to be considered

in a single objective function; other codes that have

internal parameter estimation routines limit the types

of data that can be included in the regression.

The use of influence statistics from the parameter

estimation process also allows the modeler to focus on

the quality of specific targets that drive the parameter

estimation regression. In the Trout Lake model, two

influential observations (Little John Lake and Pallette

Lake groundwater inflows—Table 1, Figs. 1 and 3)

were not previously thought to be important for model

calibration. Pallette Lake is near the basin divide and

well constrained by other surface water features;

Little John Lake has very small groundwater flow thus

was not considered to be of high interest for

groundwater modeling. More importantly, the

observed values for these targets are expected to

have higher uncertainty than other targets because of

method insensitivity for low groundwater flows (Little

John Lake) and concerns about inputs to the isotopic

method used to estimate groundwater flow (Pallette

Lake). Given the influence of these observations and

the expected high levels of uncertainty, future

calibration should more critically evaluate whether

these measured values are representative and their

importance to the calibration should be adjusted

accordingly.
5. Summary and conclusions

There are five primary findings from this work:

† Not all observed data had equal importance for

model calibration. Of the 112 measured targets, 10

had global influence (Cook’s D analyses) and an

additional 10 targets had influence for a subset of

the parameters (DFBETAS analysis). Of the

conventional head and flow targets, three of the

four (75%) baseflow targets and 8 of 58 head

targets (12%) were influential. The most
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influential observation was baseflow at the basin

outlet.

† Different types of data were important for

calibrating a groundwater-based watershed

model. In this application unconventional data

types (independent estimates of groundwater

inflow to lakes, and elevation of a lake isotope

plume) comprised half of the observations with

global (Cook’s D) influence; unconventional data

types comprised 40% of the observations with

global and local influence (DFBETAS analysis).

The regression did not converge when the

unconventional data types were removed from

the parameter estimation process.

† Some types of observed targets lack influence

(heads, topographic lake stages) despite having a

relatively large number of observations, while

other groups with few members were especially

important (baseflows, plume depth). Important

observations are those that either have a strong

relation to some portion of the model (e.g.,

measures of groundwater inflow at lakes) or

those that integrate the overall model behavior

(e.g., measurements of baseflow, particularly at the

basin outlet).

† Independent estimates of groundwater inflow to

lakes were most important for constraining

lakebed leakance (a parameter difficult to estimate

using only head and flux targets). Depth of a lake

water plume was important for constraining

estimates of hydraulic conductivity and a concep-

tual model of layering within the aquifer.

† The use of an automated parameter estimation

code provided a quantitative assessment of the

model’s ability to simulate disparate data types.

The watershed model calibration discussed here

required the use of a ‘universal’ parameter

estimation code in order to include all types of

observations in the objective function. The

evaluation of influence allowed a critical reassess-

ment of observed values and their importance to

the parameter estimation regression.

Deterministic groundwater flow models aimed at

simulating groundwater/surface-water interactions

commonly either: (1) oversimplify the watershed

and, therefore, limit their ability to attain model

objectives; or (2) over-parameterize the input and
become subject to non-uniqueness and large uncer-

tainty in parameter estimates. We suggest that these

problems can be overcome by incorporating a

rigorous calibration approach using diverse types of

calibration data. This, in turn, will facilitate a better

understanding of the importance of groundwater flows

at the watershed scale.
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